Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 105
Filtrar
1.
Endocrinology ; 165(6)2024 Apr 29.
Artículo en Inglés | MEDLINE | ID: mdl-38679470

RESUMEN

CONTEXT: Recurrent spontaneous abortion (RSA) is defined as the loss of 2 or more consecutive intrauterine pregnancies with the same sexual partner in the first trimester. Despite its significance, the etiology and underlying mechanisms of RSA remain elusive. Defective decidualization is proposed as one of the potential causes of RSA, with abnormal decidualization leading to disturbances in trophoblast invasion function. OBJECTIVE: To assess the role of bone morphogenetic protein 4 (BMP4) in decidualization and RSA. METHODS: Decidual samples were collected from both RSA patients and healthy controls to assess BMP4 expression. In vitro cell experiments utilized the hESC cell line to investigate the impact of BMP4 on decidualization and associated aging, as well as its role in the maternal-fetal interface communication. Subsequently, a spontaneous abortion mouse model was established to evaluate embryo resorption rates and BMP4 expression levels. RESULTS: Our study identified a significant downregulation of BMP4 expression in the decidua of RSA patients compared to the normal control group. In vitro, BMP4 knockdown resulted in inadequate decidualization and inhibited associated aging processes. Mechanistically, BMP4 was implicated in the regulation of FOXO1 expression, thereby influencing decidualization and aging. Furthermore, loss of BMP4 hindered trophoblast migration and invasion via FOXO1 modulation. Additionally, BMP4 downregulation was observed in RSA mice. CONCLUSION: Our findings highlighted the downregulation of BMP4 in both RSA patients and mice. BMP4 in human endometrial stromal cells was shown to modulate decidualization by regulating FOXO1 expression. Loss of BMP4 may contribute to the pathogenesis of RSA, suggesting potential avenues for abortion prevention strategies.


Asunto(s)
Aborto Habitual , Proteína Morfogenética Ósea 4 , Decidua , Endometrio , Proteína Forkhead Box O1 , Células del Estroma , Femenino , Humanos , Proteína Morfogenética Ósea 4/metabolismo , Proteína Morfogenética Ósea 4/genética , Proteína Forkhead Box O1/metabolismo , Proteína Forkhead Box O1/genética , Células del Estroma/metabolismo , Animales , Ratones , Decidua/metabolismo , Embarazo , Endometrio/metabolismo , Endometrio/citología , Aborto Habitual/metabolismo , Aborto Habitual/genética , Adulto , Trofoblastos/metabolismo , Estudios de Casos y Controles
2.
Artículo en Inglés | MEDLINE | ID: mdl-38526774

RESUMEN

PURPOSE: The purpose of our study is to investigate the function of YAP1 in the trophoblast ferroptosis and maternal-fetal interface communication of RPL. METHODS: We collected 25 villous tissues and detected the expression of YAP1. Cell counting kit-8 assay, scratch wound-healing assay, and Matrigel invasion assay were performed to observe the proliferation, migration, and invasion of HTR-8/SVneo and JAR cells. Subsequently, measured the levels of reactive oxygen species (ROS), malondialdehyde (MDA), reduced glutathione (GSH), SLC7A11, SOD2, and GPX4. Ultimately, the use of ferroptosis activator (erastin) and inhibitor (Ferrostatin-1, fer-1) further confirmed the regulation by YAP1. In addition, established an in vitro-induced cell model to study the effect of YAP1 on the decidualization process. Finally, animal models were implemented for further confirmation. RESULTS: We found that YAP1 was downregulated in RPL patients. Overexpression of YAP1 could significantly enhance the proliferation, migration, and invasion of trophoblasts, and inhibit ferroptosis. Knocking down YAP1 exhibited the opposite effect. Rescue experiments have shown that YAP1 could upregulate the expression of SLC7A11 and GPX4, which are key molecules in the classic pathway of ferroptosis. In addition, the decidualization was impaired when hESCs were treated with conditioned medium of YAP1 knockdown trophoblasts. Moreover, we found that Yap1, Slc7a11, and Gpx4 were downregulated in the RPL mice, along with increased MDA and decreased GSH. CONCLUSION: Downregulation of YAP1 induces ferroptosis, thereby damaging the trophoblast invasion processes, which also disturbs the communication at the maternal-fetal interface. Our study identified YAP1 as a potential key molecule in the pathogenesis of RPL.

3.
Zhongguo Dang Dai Er Ke Za Zhi ; 26(2): 164-168, 2024 Feb 15.
Artículo en Chino | MEDLINE | ID: mdl-38436314

RESUMEN

OBJECTIVES: To study the association of hypercoagulability with urinary protein and renal pathological damage in children with immunoglobulin A vasculitis with nephritis (IgAVN). METHODS: Based on the results of coagulation function, 349 children with IgAVN were divided into a hypercoagulability group consisting of 52 children and a non-hypercoagulability group consisting of 297 children. Urinary protein and renal pathological features were compared between the two groups, and the factors influencing the formation of hypercoagulability in children with IgAVN were analyzed. RESULTS: Compared with the non-hypercoagulability group, the hypercoagulability group had significantly higher levels of urinary erythrocyte count, 24-hour urinary protein, urinary protein/creatinine, urinary immunoglobulin G/creatinine, and urinary N-acetyl-ß-D-glucosaminidase (P<0.05). The hypercoagulability group also had a significantly higher proportion of children with a renal pathological grade of III-IV, diffuse mesangial proliferation, capillary endothelial cell proliferation, or >25% crescent formation (P<0.05). The multivariate logistic regression analysis showed that capillary endothelial cell proliferation and glomerular crescent formation >25% were associated with the formation of hypercoagulability in children with IgAVN (P<0.05). CONCLUSIONS: The renal injury in IgAVN children with hypercoagulability is more severe, with greater than 25% crescent formation and increased proliferation of glomerular endothelial cells being important contributing factors that exacerbate the hypercoagulable state in IgAVN.


Asunto(s)
Vasculitis por IgA , Nefritis , Trombofilia , Niño , Humanos , Creatinina , Células Endoteliales , Riñón , Vasculitis por IgA/complicaciones , Trombofilia/etiología , Inmunoglobulina A
4.
Heliyon ; 10(5): e26989, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38468970

RESUMEN

Background: Activation of the Hedgehog signaling pathway is linked to the initiation and development of human hepatocellular carcinoma (HCC). However, its impact on clinical outcomes and the HCC microenvironment remains unclear. Methods: We performed comprehensive analyses of Hedgehog pathway genes in a large cohort of HCC patients. Specifically, we utilized univariate Cox regression analysis to identify Hedgehog genes linked to overall survival, and the LASSO algorithm was used to construct a Hedgehog-related gene pattern. We subsequently examined the correlation between the Hedgehog pattern and the HCC microenvironment employing the CIBERSORT and ssGSEA algorithms. Furthermore, Tumor Immune Dysfunction and Exclusion (TIDE) algorithm and the anti-PD-L1 treatment dataset (IMvigor210) are used to evaluate the clinical response of the Hedgehog pattern in predicting immune checkpoint inhibitors. Results: We found that the Hedgehog activation score (HHAS), a prognostic score based on 11 Hedgehog genes, was significantly associated with HCC patient survival. Patients exhibiting high HHAS experienced markedly reduced survival rates compared to those with low HHAS, and HHAS emerged as an independent prognostic factor for HCC. Functional enrichment analysis unveiled the association of the HHAS phenotype with functions related to the immune system, and further investigation demonstrated that HCC patients exhibiting low HHAS displayed elevated levels of anti-tumor immune activation in CD8+ T cells, while high HHAS were linked to immune escape phenotypes and increased infiltration of immune suppressive cells. In addition, in the Immune Checkpoint Inhibitor (ICI) cohort of IMvigor210, patients with higher HHAS had worse ICI treatment outcomes and shortened survival time, indicating that the HHAS is a useful indicator for predicting patient response to immunotherapy. Conclusions: In summary, our study offers valuable insights for advancing research on Hedgehog and its impact on tumor immunity, which provides an opportunity to optimize prognosis and immune therapy for HCC.

5.
Clin Kidney J ; 17(1): sfad027, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38186883

RESUMEN

Objective: To explore the advantages of urinary matrix metalloproteinase-7 (MMP-7) in evaluating renal tubular injury in minimal change disease (MCD) and focal segmental glomerulosclerosis (FSGS) patients compared with urinary cystatin C (CysC) and retinol-binding protein (RBP). Methods: Serum and urine samples were collected from 20 healthy volunteers, and 40 MCD and 20 FSGS patients. Serum and urinary MMP-7 levels were measured by enzyme-linked immunosorbent assay. Urinary total protein, CysC and RBP levels were measured by automatic specific protein analyzer and compared with urinary creatinine level for calibration. The renal tissue serial sections were stained by MMP-7 immunohistochemistry and periodic acid-Schiff. Results: Under light microscopy, MMP-7 granular weak positive expression was showed sporadically in the cytoplasm of a few renal tubular epithelial cells without obvious morphological changes in MCD patients, and MMP-7-positive expression was observed in the cytoplasm of some renal tubular epithelial cells in FSGS patients. There was no significant difference in serum MMP-7 level among the three groups. Compared with the control group, the urinary MMP-7 level in MCD patients was higher, but urinary CysC and RBP levels were not increased significantly. Compared with the control group and MCD patients, urinary MMP-7, CysC and RBP levels in FSGS patients were upregulated significantly. Conclusions: Urinary MMP-7 could not only evaluate the mild renal tubular epithelial cells injury in MCD patients with massive proteinuria, but also evaluate the continuous renal tubular epithelial cells injury in FSGS patients.

6.
J Orthop Trauma ; 38(4): 183-189, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38206761

RESUMEN

OBJECTIVE: To determine whether intrawound vancomycin changes the bacteriology of surgical site infection pathogens and investigate the emergence of antibiotic-resistant pathogens. DESIGN: Secondary analysis of phase III, prospective, randomized clinical trial. SETTING: Thirty-six US trauma centers. PATIENT SELECTION CRITERIA: Patients who became infected after fixation of tibial plateau or pilon fracture. OUTCOME MEASURES AND COMPARISONS: Pathogen types and bacterial susceptibilities as determined from routine clinical culture in the operating room. RESULTS: Seventy-four patients were studied who were 67.5% male with a mean age of 48.6 years. A lower proportion of gram-positive cocci was observed in the vancomycin powder compared with the standard-of-care group (3.7% vs. 8.0%, P = 0.01). Methicillin-resistant Staphylococcus aureus infection incidence was comparable in both the vancomycin powder and the standard-of-care groups, but rates of methicillin-susceptible S. aureus infections were lower in the treatment group (1.4% vs. 4.8%, P = 0.01). The incidence of coagulase-negative Staphylococci and gram-negative rod infections were similar in both groups. There was no significant difference in susceptibilities between groups in rates of vancomycin-resistant enterococcus. CONCLUSIONS: Topical vancomycin powder decreases the likelihood of gram-positive infections consistent with the biologic activity of vancomycin. Fewer methicillin-susceptible S. aureus and coagulase-negative Staphylococci infections were observed in the group treated with vancomycin powder. An effect of vancomycin powder on methicillin-resistant S. aureus infection risk was not detected given the low incidence in both the intrawound vancomycin and the standard-of-care groups. There was no emergence of gram-negative rod infections or increased resistance patterns observed. Use of topical vancomycin powder does not seem to produce infections in these patients with greater antibiotic resistance than would have occurred without its use. LEVEL OF EVIDENCE: Therapeutic Level II. See Instructions for Authors for a complete description of levels of evidence.


Asunto(s)
Bacteriología , Staphylococcus aureus Resistente a Meticilina , Infecciones Estafilocócicas , Femenino , Humanos , Masculino , Persona de Mediana Edad , Antibacterianos , Coagulasa/farmacología , Coagulasa/uso terapéutico , Meticilina/farmacología , Meticilina/uso terapéutico , Polvos/farmacología , Estudios Prospectivos , Infecciones Estafilocócicas/microbiología , Staphylococcus aureus , Infección de la Herida Quirúrgica/tratamiento farmacológico , Infección de la Herida Quirúrgica/epidemiología , Infección de la Herida Quirúrgica/prevención & control , Vancomicina
7.
Biochem Biophys Res Commun ; 694: 149383, 2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38150918

RESUMEN

Metformin is currently a strong candidate antitumor agent for multiple cancers, and has the potential to inhibit cancer cell viability, growth, and proliferation. Metabolic reprogramming is a critical feature of cancer cells. However, the effects of metformin which targets glucose metabolism on HepG2 cancer cells remain unclear. In this study, to explore the effects of metformin on glucose metabolism in HepG2 cells, we conducted real-time metabolomic monitoring of live HepG2 cells treated with metformin using 13C in-cell NMR spectroscopy. Metabolic tracing with U-13C6-glucose revealed that metformin significantly increased the production of 13C-G3P and 13C-glycerol, which were reported to attenuate liver cancer development, but decreased the production of potential oncogenesis-supportive metabolites, including 13C-lactate, 13C-alanine, 13C-glycine, and 13C-glutamate. Moreover, the expression levels of enzymes associated with the measured metabolites were carried out. The results showed that the levels of ALT1, MCT4, GPD2 and MPC1 were greatly reduced, which were consistent with the changes of measured metabolites in 13C in-cell NMR spectroscopy. Overall, our approach directly provides fundamental insights into the effects of metformin on glucose metabolism in live HepG2 cells, and highlights the potential mechanism of metformin, including the increase in production of G3P and glycerol derived from glucose, as well as the inhibition of glucose incorporation into lactate, alanine, glutamate, and glycine.


Asunto(s)
Metformina , Humanos , Metformina/farmacología , Células Hep G2 , Glicerol , Espectroscopía de Resonancia Magnética , Glucosa/metabolismo , Alanina/metabolismo , Ácido Glutámico , Glicina , Lactatos
8.
J Orthop Trauma ; 38(1): 10-17, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-38093438

RESUMEN

OBJECTIVES: To estimate the generalizability of treatment effects observed in the VANCO trial to a broader population of patients with tibial plateau or pilon fractures. METHODS: Design and Setting: Clinical trial data from 36 United States trauma centers and Trauma Quality Programs registry data from more than 875 Level I-III trauma centers in the United States and Canada.Patient Selection Criteria: Patients enrolled in the VANCO trial treated with intrawound vancomycin powder from January 2015 to June 2017 and 31,924 VANCO-eligible TQP patients admitted in 2019 with tibial plateau and pilon fractures.Outcome Measure and Comparisons: Deep surgical site infection and gram-positive deep surgical site infection estimated in the TQP sample weighed by the inverse probability of trial participation. RESULTS: The 980 patients in the VANCO trial were highly representative of 31,924 TQP VANCO-eligible patients (Tipton generalizability index 0.96). It was estimated that intrawound vancomycin powder reduced the odds of deep surgical infection by odds ratio (OR) = 0.46 (95% confidence interval [CI] 0.25-0.86) and gram-positive deep surgical infection by OR = 0.39 (95% CI, 0.18-0.84) within the TQP sample of VANCO-eligible patients. For reference, the trial average treatment effects for deep surgical infection and gram-positive deep surgical infection were OR = 0.60 (95% CI, 0.37-0.98) and OR = 0.44 (95% CI, 0.23-0.80), respectively. CONCLUSIONS: This generalizability analysis found that the inferences of the VANCO trial generalize and might even underestimate the effects of intrawound vancomycin powder when observed in a wider population of patients with tibial plateau and pilon fractures. LEVEL OF EVIDENCE: Therapeutic Level III. See Instructions for Authors for a complete description of levels of evidence.


Asunto(s)
Fracturas de la Tibia , Vancomicina , Humanos , Vancomicina/uso terapéutico , Vancomicina/farmacología , Antibacterianos/uso terapéutico , Infección de la Herida Quirúrgica/epidemiología , Infección de la Herida Quirúrgica/prevención & control , Infección de la Herida Quirúrgica/tratamiento farmacológico , Polvos , Fracturas de la Tibia/cirugía , América del Norte , Estudios Retrospectivos
9.
Clin Nephrol ; 101(3): 109-122, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38126195

RESUMEN

BACKGROUND: Our study aims to investigate the immunological pathogenesis underlying immunoglobulin A nephropathy (IgAN) and explore potential biomarkers for IgAN diagnosis. MATERIALS AND METHODS: Differentially expressed genes (DEGs) of formalin-fixed and paraffin-embedded (FFPE) samples were screened between IgAN patients and healthy people based on GSE115857. Gene oncology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Set Enrichment Analysis (GSEA) enrichment was performed to identify related biological processes and pathways. CIBERSORT was utilized to seek the relationship of immune cell infiltration with IgAN. Finally, the expression of paraoxonase 2 (PON2) related to innate immune response was verified in FFPE samples of minimal change disease and IgAN patients by immunohistochemistry and PAS staining. RESULTS: 25 down-regulated genes and 12 up-regulated genes were identified in IgAN patients, which mainly responded to endothelial cell proliferation, inflammatory response, and angiogenesis. Toll-like receptor signaling pathway and Epstein-Barr virus (EBV) infection might be involved in IgAN pathogenesis. In addition, the infiltration of macrophages M0, naïve B cells, and follicular helper T (Tfh) cells was positively correlated in IgAN patients. Macrophages M1 and M2 infiltration were up-regulated in IgAN patients, which indicated that innate immune response was closely associated with IgAN. Besides, the results of immunohistochemistry showed that PON2 was obviously positively expressed in acute and chronic lesions of IgAN patients. CONCLUSION: In addition to abnormalities in the adaptive immune response, macrophages M1/M2 and innate immune disorder may participate in IgAN pathogenesis. PON2 may become the feasible targets for further investigation of IgAN.


Asunto(s)
Infecciones por Virus de Epstein-Barr , Glomerulonefritis por IGA , Humanos , Glomerulonefritis por IGA/genética , Herpesvirus Humano 4 , Biología Computacional , Expresión Génica
10.
Aging (Albany NY) ; 15(24): 15287-15323, 2023 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-38112597

RESUMEN

Pyrocytosis is involved in the development of abdominal aortic aneurysm (AAA), we explored the pyrocytosis-related hub genes in AAA and conducted a diagnostic model based on the pyrocytosis-related genes score (PRGs). A total of 2 bulk RNA-seq (GSE57691 and GSE47472) datasets and pyrocytosis-related genes were integrated to obtain 24 pyrocytosis-related different expression genes (DEGs). The LASSO Cox regression analysis was conducted to filter out 7 genes and further establish the nomogram signature based on the PRGs that exhibited a good diagnosis value. Weighted gene co-expression network analysis (WGCNA) established 14 gene modules and further identified 6 hub genes which were involved in the regulatory process of pyrocytosis in AAA. At the single cell level, we further identified 3 immune cells were highly associated with the pyrocytosis process in AAA. Finally, the cell-cell communication demonstrated that fibroblasts and endothelial cells and myeloid cells maintained close communications. Here, we identified the dysfunctional expressed pyrocytosis-related genes and immune cells in AAA, which provide a comprehensive understanding of the pathogenesis of AAA.


Asunto(s)
Aneurisma de la Aorta Abdominal , Células Endoteliales , Humanos , RNA-Seq , Análisis de Expresión Génica de una Sola Célula , Aneurisma de la Aorta Abdominal/genética , Perfilación de la Expresión Génica
11.
J Gen Virol ; 104(12)2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-38116760

RESUMEN

Transmissible gastroenteritis virus (TGEV) is a coronavirus that infects piglets with severe diarrhoea, vomiting, dehydration, and even death, causing huge economic losses to the pig industry. The underlying pathogenesis of TGEV infection and the effects of TGEV infection on host metabolites remain poorly understood. To investigate the critical metabolites and regulatory factors during TGEV infection in intestinal porcine epithelial cells (IPEC-J2), we performed metabolomic and transcriptomic analyses of TGEV-infected IPEC-J2 cells by LC/MS and RNA-seq techniques. A total of 87 differential metabolites and 489 differentially expressed genes were detected. A series of metabolites and candidate genes from glutathione metabolism and AMPK signalling pathway were examined through combined analysis of metabolome and transcriptome. We found glutathione peroxidase 3 (GPX3) is markedly reduced after TGEV infection, and a significant negative correlation between AMPK signalling pathway and TGEV infection. Exogenous addition of the AMPK activator COH-SR4 significantly downregulates stearoyl coenzyme A (SCD1) mRNA and inhibits TGEV replication; while exogenous GSK-690693 significantly promotes TGEV infection by inhibiting AMPK signalling pathway. In summary, our study provides insights into the key metabolites and regulators for TGEV infection from the metabolome and transcriptome perspective, which will offer promising antiviral metabolic and molecular targets and enrich the understanding of the existence of a similar mechanism in the host.


Asunto(s)
Gastroenteritis Porcina Transmisible , Virus de la Gastroenteritis Transmisible , Animales , Porcinos , Virus de la Gastroenteritis Transmisible/genética , Proteínas Quinasas Activadas por AMP , Línea Celular , Células Epiteliales , Perfilación de la Expresión Génica , Gastroenteritis Porcina Transmisible/genética
12.
J Mater Chem B ; 11(38): 9201-9211, 2023 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-37740320

RESUMEN

Cancer has always been the biggest threat to human health, but the effect of traditional treatments such as surgery, chemotherapy, and radiotherapy is not satisfactory. Currently, nanomedicine-based chemoimmunotherapy can improve clinical results through unique synergistic effects. However, it is mainly enriched at tumor sites based on EPR effects, without an active delivery strategy and relatively low tumor targeting distribution. Therefore, nanorobots (Cu@MPS-GOD) with magnetic responsiveness and enzyme-like activity were prepared, which can enrich and move to the tumor site under the action of a 3D magnetic field, and cause tumor cell immunogenic death by cascade catalytic Fenton reactions. Meanwhile, Cu@MPS-GOD can also activate immune cells or induce cancer cells to expose surface antigens, trigger systemic anti-cancer immunity, and have a good inhibitory effect on a breast tumor model in mice with an inhibition rate of 59.3%. This work provides an attractive strategy to expand the therapeutic effect of cancer when chemical dynamic therapy is combined with immunotherapy, which has a potential clinical application prospect.


Asunto(s)
Neoplasias , Ratones , Humanos , Animales , Neoplasias/tratamiento farmacológico , Fototerapia , Inmunoterapia/métodos , Catálisis , Nanomedicina/métodos
14.
Front Nutr ; 10: 1227027, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37560060

RESUMEN

Objective: Schisandra chinensis (Turcz.) Baill. (S. chinensis) is a Traditional Chinese medicinal herb that can be used both for medicinal purposes and as a food ingredient due to its beneficial properties, and it is enriched with a wide of natural plant nutrients, including flavonoids, phenolic acids, anthocyanins, lignans, triterpenes, organic acids, and sugars. At present, there is lack of comprehensive study or systemic characterization of nutritional and active ingredients of S. chinensis using innovative mass spectrometry techniques. Methods: The comprehensive review was conducted by searching the PubMed databases for relevant literature of various mass spectrometry techniques employed in the analysis of nutritional components in S. chinensis, as well as their main nutritional effects. The literature search covered the past 5 years until March 15, 2023. Results: The potential nutritional effects of S. chinensis are discussed, including its ability to enhance immunity, function as an antioxidant, anti-allergen, antidepressant, and anti-anxiety agent, as well as its ability to act as a sedative-hypnotic and improve memory, cognitive function, and metabolic imbalances. Meanwhile, the use of advanced mass spectrometry detection technologies have the potential to enable the discovery of new nutritional components of S. chinensis, and to verify the effects of different extraction methods on these components. The contents of anthocyanins, lignans, organic acids, and polysaccharides, the main nutritional components in S. chinensis, are also closely associated to its quality. Conclusion: This review will provide guidelines for an in-depth study on the nutritional value of S. chinensis and for the development of healthy food products with effective components.

15.
Adv Sci (Weinh) ; 10(27): e2207394, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37485647

RESUMEN

The robust and stable expression of CD38 in T-cell acute lymphoblastic leukemia (T-ALL) blasts makes CD38 chimeric antigen receptor (CAR)-T/natural killer (NK) a potential therapy for T-ALL. However, CD38 expression in normal T/NK cells causes fratricide of CD38 CAR-T/NK cells. Here a "2-in-1" gene editing strategy is developed to generate fratricide-resistant locus-specific CAR-T/NK cells. CD38-specific CAR is integrated into the disrupted CD38 locus by CRISPR/Cas9, and CAR is placed under the control of either endogenous CD38 promoter (CD38KO/KI ) or exogenous EF1α promoter (CD38KO/KI EF1α). CD38 knockout reduces fratricide and allows the expansion of CAR-T cells. Meanwhile, CD38KO/KI EF1α results in higher CAR expression than CD38KO/KI in both CAR-T and CAR-NK cells. In a mouse T-ALL model, CD38KO/KI EF1α CAR-T cells eradicate tumors better than CD38KO/KI CAR-T cells. Surprisingly, CD38KO/KI CAR-NK cells show superior tumor control than CD38KO/KI EF1α CAR-NK cells. Further investigation reveals that endogenous regulatory elements in NK cells lead to higher expression of CD38 CAR than in T cells, and the expression levels of CAR affect the therapeutic outcome of CAR-T and CAR-NK cells differently. Therefore, these results support the efficacy of CD38 CAR-T/NK against T-ALL and demonstrate that the "2-in-1" strategy can resolve fratricide and enhance tumor eradication, paving the way for clinical translation.


Asunto(s)
Leucemia-Linfoma Linfoblástico de Células T Precursoras , Receptores Quiméricos de Antígenos , Animales , Ratones , Receptores Quiméricos de Antígenos/genética , Receptores Quiméricos de Antígenos/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patología , Leucemia-Linfoma Linfoblástico de Células T Precursoras/terapia , Inmunoterapia Adoptiva/métodos , Línea Celular Tumoral , Células Asesinas Naturales
16.
J Virol ; 97(6): e0068923, 2023 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-37289083

RESUMEN

Goblet cells and their secreted mucus are important elements of the intestinal mucosal barrier, which allows host cells to resist invasion by intestinal pathogens. Porcine deltacoronavirus (PDCoV) is an emerging swine enteric virus that causes severe diarrhea in pigs and causes large economic losses to pork producers worldwide. To date, the molecular mechanisms by which PDCoV regulates the function and differentiation of goblet cells and disrupts the intestinal mucosal barrier remain to be determined. Here, we report that in newborn piglets, PDCoV infection disrupts the intestinal barrier: specifically, there is intestinal villus atrophy, crypt depth increases, and tight junctions are disrupted. There is also a significant reduction in the number of goblet cells and the expression of MUC-2. In vitro, using intestinal monolayer organoids, we found that PDCoV infection activates the Notch signaling pathway, resulting in upregulated expression of HES-1 and downregulated expression of ATOH-1 and thereby inhibiting the differentiation of intestinal stem cells into goblet cells. Our study shows that PDCoV infection activates the Notch signaling pathway to inhibit the differentiation of goblet cells and their mucus secretion, resulting in disruption of the intestinal mucosal barrier. IMPORTANCE The intestinal mucosal barrier, mainly secreted by the intestinal goblet cells, is a crucial first line of defense against pathogenic microorganisms. PDCoV regulates the function and differentiation of goblet cells, thereby disrupting the mucosal barrier; however, the mechanism by which PDCoV disrupts the barrier is not known. Here, we report that in vivo, PDCoV infection decreases villus length, increases crypt depth, and disrupts tight junctions. Moreover, PDCoV activates the Notch signaling pathway, inhibiting goblet cell differentiation and mucus secretion in vivo and in vitro. Thus, our results provide a novel insight into the mechanism underlying intestinal mucosal barrier dysfunction caused by coronavirus infection.


Asunto(s)
Infecciones por Coronavirus , Células Caliciformes , Receptores Notch , Enfermedades de los Porcinos , Animales , Coronavirus , Infecciones por Coronavirus/patología , Infecciones por Coronavirus/veterinaria , Células Caliciformes/citología , Transducción de Señal , Porcinos , Enfermedades de los Porcinos/patología , Enfermedades de los Porcinos/virología , Células Madre/citología , Diferenciación Celular , Receptores Notch/metabolismo
17.
Plant Direct ; 7(6): e502, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37334271

RESUMEN

Cyanobacterial NdhM, an oxygenic photosynthesis-specific NDH-1 subunit, has been found to be essential for the formation of a large complex of NDH-1 (NDH-1L). The cryo-electron microscopic (cryo-EM) structure of NdhM from Thermosynechococcus elongatus showed that the N-terminus of NdhM contains three ß-sheets, while two α-helixes are present in the middle and C-terminal part of NdhM. Here, we obtained a mutant of the unicellular cyanobacterium Synechocystis 6803 expressing a C-terminal truncated NdhM subunit designated NdhMΔC. Accumulation and activity of NDH-1 were not affected in NdhMΔC under normal growth conditions. However, the NDH-1 complex with truncated NdhM is unstable under stress. Immunoblot analyses showed that the assembly process of the cyanobacterial NDH-1L hydrophilic arm was not affected in the NdhMΔC mutant even under high temperature. Thus, our results indicate that NdhM can bind to the NDH-1 complex without its C-terminal α-helix, but the interaction is weakened. NDH-1L with truncated NdhM is more prone to dissociation, and this is particularly evident under stress conditions.

18.
Leukemia ; 37(8): 1660-1670, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37391486

RESUMEN

CAR-T therapies to treat T-cell malignancies face unique hurdles. Normal and malignant T cells usually express the same target for CAR, leading to fratricide. CAR-T cells targeting CD7, which is expressed in various malignant T cells, have limited expansion due to fratricide. Using CRISPR/Cas9 to knockout CD7 can reduce the fratricide. Here we developed a 2-in-1 strategy to insert EF1α-driven CD7-specific CAR at the disrupted CD7 locus and compared it to two other known strategies: one was random integration of CAR by a retrovirus and the other was site-specific integration at T-cell receptor alpha constant (TRAC) locus, both in the context of CD7 disruption. All three types of CD7 CAR-T cells with reduced fratricide could expand well and displayed potent cytotoxicity to both CD7+ tumor cell lines and patient-derived primary tumors. Moreover, EF1α-driven CAR expressed at the CD7 locus enhances tumor rejection in a mouse xenograft model of T-cell acute lymphoblastic leukemia (T-ALL), suggesting great clinical application potential. Additionally, this 2-in-1 strategy was adopted to generate CD7-specific CAR-NK cells as NK also expresses CD7, which would prevent contamination from malignant cells. Thus, our synchronized antigen-knockout CAR-knockin strategy could reduce the fratricide and enhance anti-tumor activity, advancing clinical CAR-T treatment of T-cell malignancies.


Asunto(s)
Leucemia-Linfoma Linfoblástico de Células T Precursoras , Receptores Quiméricos de Antígenos , Humanos , Animales , Ratones , Receptores Quiméricos de Antígenos/metabolismo , Linfocitos T/metabolismo , Inmunoterapia Adoptiva , Células Asesinas Naturales/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/patología , Línea Celular Tumoral
19.
ACS Appl Bio Mater ; 6(6): 2384-2393, 2023 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-37191675

RESUMEN

Infections caused by multidrug-resistant bacteria continue to pose a serious threat to human health, and therefore it is important to explore the availability of antimicrobial drugs and modalities. Herein, jellyfish-type irregular mesoporous iron oxide nanoreactors containing ciprofloxacin, Janus Fe3O4@mSiO2@Cip nanoparticles (JFmS@Cip NPs), were developed for pH-responsive synergistic antimicrobial therapy in a microacidic environment. Compared with the use of symmetric nanocarriers, the asymmetric decoration on both sides of the particles allows different components to act on bacteria, Fe3O4 NPs have good magnetic and peroxidase-like catalytic activity, and the antibiotic ciprofloxacin can kill bacteria efficiently. Notably, due to the synergistic effect between different components of Janus particles, in vitro antibacterial experiments showed that JFmS@Cip NPs can kill bacteria efficiently at low concentrations, reaching an antibacterial rate of 99.6%. JFmS@Cip NPs combine multiple antibacterial properties that can be used to improve the therapeutic efficacy of current nanomedicines against drug-resistant bacteria.


Asunto(s)
Infecciones Bacterianas , Nanopartículas , Humanos , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Infecciones Bacterianas/tratamiento farmacológico , Ciprofloxacina/farmacología , Ciprofloxacina/uso terapéutico , Bacterias , Nanotecnología
20.
Front Nutr ; 10: 1076569, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36866057

RESUMEN

Background: Ganoderma lucidum is reportedly the best source of traditional natural bioactive constituents. Ganoderma triterpenoids (GTs) have been verified as an alternative adjuvant for treating leukemia, cancer, hepatitis and diabetes. One of the major triterpenoids, Resinacein S, has been found to regulate lipid metabolism and mitochondrial biogenesis. Nonalcoholic fatty liver disease (NAFLD) is a common chronic liver disease that has become a major public health problem. Given the regulatory effects on lipid metabolism of Resinacein S, we sought to explore potential protective effects against NAFLD. Methods: Resinacein S was extracted and isolated from G. lucidum. And mice were fed with high fat diet with or without Resinacein S to detect hepatic steatosis. According to Network Pharmacology and RNA-seq, we analyzed the hub genes of Resinacein S against NAFLD disease. Results: Our results can be summarized as follows: (1) The structure of Resinacein S was elucidated using NMR and MS methods. (2) Resinacein S treatment could significantly attenuate high-fat diet (HFD)-induced hepatic steatosis and hepatic lipid accumulation in mouse. (3) GO terms, KEGG pathways and the PPI network of Resinacein S induced Differentially Expressed Genes (DEGs) demonstrated the key target genes of Resinacein S against NAFLD. (4) The hub proteins in PPI network analysis could be used for NAFLD diagnosis and treatment as drug targets. Conclusion: Resinacein S can significantly change the lipid metabolism in liver cells and yield a protective effect against steatosis and liver injury. Intersected proteins between NAFLD related genes and Resinacein S-induced DEGs, especially the hub protein in PPI network analysis, can be used to characterize targets of Resinacein S against NAFLD.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...